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ABSTRACT

In this paper, artificial neural networks are used to investigate the relationship between
plasma processing parameters and woven surface wetting properties. In order to reduce
the model complexity, a fuzzy criterion is used to select the most relevant parameters
which are taken as inputs of the ANNs. The outputs are the surface water contact angle
and the capillarity of woven fabrics. The use of early stopping and Bayesian regularization
approaches are considered. Two different network configurations are studied. One deals
with two networks each having one output layer neuron and another with a single
network that gives two outputs. A comparison between these configurations and training
algorithms is performed. Obtained results show that the first configuration combined with
the Bayesian regularization approach is the most suitable to achieve a good
generalization.
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1. INTRODUCTION

Atmospheric plasma treatment has been widely used for textile surface modification because it offers a
variety of active species for surface processing (Nasadil and Benesovsky, 2008). These active species (ions,
electrons, free radicals, meta-stables, UV photons) can perform numerous surface modification processes
such as surface activation, contamination removal, cross-linking and etching without affecting material bulk
properties (Herbert, 2007). Surface activation consists of the introduction of new functional groups onto
the treated surface in order to give it specific properties by varying its surface energy. Plasma activation is
performed in gases that do not polymerize. The bombardment of the surface with the reactive plasma
particles breaks covalent bonds and creates free-radicals on the treated material. These surface radicals
react with the active plasma species to form various active chemical functional groups such as hydroxyl,
carbonyl, carboxyl, and amine groups on the substrate surface. Such activation alters the chemical activity
and characteristics of the surface. The resulting surface properties depend on the plasma gas composition.
For example, oxygen and oxygen-containing plasmas lead to the grafting of polar and hydrophilic functions
which increase the polarity of the fiber surface. In general, surface activation is mainly used for treating
natural and man-made textile materials to raise their surface energy in order to obtain better surface
characteristics such as wettability (Hossain et al.,, 2006; Karahan and Ozdogan, 2008), printability
(Maamoun and Ghalab, 2013), dyeability (Cai and Qiu, 2008) and adhesion promotion (Leroux et al., 2009).
The consequence of enhanced wetting properties are multiple and of great interest to textile
manufacturing. Although plasma treatment can achieve a wide range of surface modifications, it is
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extremely difficult to understand the complex nonlinear relationship between its processing parameters
and surface wetting properties. Thus, we use neural networks to construct a model since they have already
been applied successfully to model various plasma-based processes (Himmel et al., 1993); (Byungwhan et
al.,, 1994); (Huang et al., 1994); (Han et al., 1994); (Kim et al., 2001); (Allan et al., 2002); (Wang et al.,
2007) as well as many other textile engineering problems (Fan et al., 1998; Chattopadhyay and Guha, 2004;
Bhatacharjee et al., 2007) . Indeed, neural networks have several attractive properties which make them
favorable alternatives to more traditional statistical modeling techniques. Specifically, neural networks
have the ability to learn from experimental data, model complex non-linear multi-dimensional relationships
without any prior assumptions about the nature of the relationships, and provide good approximations
from imperfect or incomplete data (Psichogios and Ungar, 1991; Hunt et al., 1992).

However, this procedure of modeling is very complex because of the nonlinear relationship between input
and output variables, the large dimensionality of the input space, the presence of redundant variables and
the lack of available learning data. These factors may cause a deterioration of the generalization ability and
an increase of the computational cost, thus resulting in inefficient outcomes of the model. Thus, in order to
reduce the model complexity, the fuzzy sensitivity criterion developed by Deng et al. (2007) is considered
for selecting the most relevant input variables of plasma process. This method has been successfully
applied to the design of a nonwoven process and can be extended to other industrial problems in which
time for obtaining learning samples is rather limited and experimental cost is often high (Deng et al., 2007).
By comparison with other numerical methods, the proposed criterion was shown to be more robust and
less sensitive to measured data noises and uncertainties. Furthermore, it can deal with a small number of
learning data (Deng et al., 2010). These advantages provide a strong motivation to the present paper for
using such method to select the most relevant plasma process parameters in order to reduce the
complexity of managing data and obtain more significant and more physically interpretable results with a
very limited cost. The results obtained from this fuzzy logic based method can be used to validate existing
physical and chemical knowledge on the relationship between fabric structure and plasma treatment and
help generate new specialized knowledge in the related field.

In this paper, a neural network approach is used for modeling the relationship between plasma processing
parameters and fabric surface wetting properties. The early stopping and Bayesian regularization
techniques are considered. Two different network configurations are studied. One deals with two networks
each having one output layer and another with a single network combining the two outputs. A comparison
between these configurations and training algorithms is done.

2. MATERIALS AND METHODS
2.1.Materials

Six different woven fabrics are used during this study. Two of them are made of viscose fibers, and the
others of polyester (PET) fibers. Before air plasma treatment, the woven samples were cleaned and left in a
controlled climate (20+2°C, 65+2% relative humidity (RH)) for at least 24 hours prior to all experiments.
Table 1 presents the fabric features and their ranges. The numeric values 0 and 1 are used to encode the
corresponding woven feature (given in parentheses). Fabric weight per unit area is measured according to
the NF G 07-150 standard using an electronic weighting balance. The thickness of the fabrics is measured
according to the NF G 07-153 standard at a pressure of 0.5 kPa. The yarn fineness (count) is measured by
weight/length, according to the NF G 07-104 standard, and expressed in Decitex (grams per 10,000 meters).
The fineness of fibers is measured according to the NF G 07-306 standard using a Vibroskop from Zweigle.
The air permeability is measured by the TEXTEST Air permeability Tester (FX3300) at 196 Pa air pressure
(following the NF G 07-111 standard). The surface roughness is measured by an optical profilometer (Cotec
Altisurf 500) at 5 mm step size and 3x3mm? surface area. The porosity is calculated from the fabric’s
characteristics such as thickness, fabric weight and fiber material density.
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Tablel: Fabric features and their range

Parameter wovenl | woven2 | woven3 | woven4 | woven5 | woven6 Min Max
Fiber nature PET PET PET PET viscose | viscose | O (PET) | 1 (viscose)
Fabric weight (g/m?) 160 170 200 195 180 190 160 200
Thickness (mm) 0.32 0.31 0.38 0.37 0.38 0.41 0.31 0.41
Construction plain plain 3/1twill | 3/1twill plain 3/1twill | O (plain) | 1(twill)
Weft density (picks/cm) 17.2 19 20 21 17 21 17.2 21
Warp density (ends/cm) 39 39.2 40 42 42 45 39.2 45
Weft count (dtex) 167 150 167 150 34 34 150 340.29
Fiber count (dtex) 1.7 0.9 1.7 0.9 1.3 1.3 0.9 1.7
Air permeability (I/m?s) 54.85 19.62 103.7 49.14 786.2 673.2 19.62 786.2
Porosity (%) 63.77 60.55 61.86 62.08 68.84 69.51 60.55 69.51
Surface roughness (um) 57.8 56.5 51.5 38.8 74.6 85.4 41.86 74.4

2.2.Plasma treatments

Plasma treatments are carried out using an atmospheric plasma machine called “Coating star”
manufactured by the Ahlbrandt system (Figure 1). The following machine parameters are kept constant:
frequency of 30 KHz, electrode length of 0.5m and inter-electrode distance of 1.5mm. The electrical power
and treatment speed are varied respectively between 300-1000 Watts and 2-10 m/min. Plasma discharge is
generated at atmospheric pressure by two electrodes and a counter-electrode both covered by a dielectric
ceramic material.

i 1- Sample

2- 2elecirodes

3- Roll-Shaped counter-
electrode

M em

Figure 1: Atmospheric plasma treatment, using “Coating Star” system

2.3.Measurements

In order to quantify the surface treatment modification, contact angle and capillarity measurements are
carried out with distilled water on a tensiometer “3S balance” from GBX. During measurements, a fabric
sample of size 5cm x 3cm is connected to the tensiometer at the weighing position and progressively
brought into contact with the surface of water placed in a container. On immediate contact with the water
surface, a sudden increase weight is measured due to wetting forces. When the liquid is moved down to
leave the fabric sample, the balance gave the values of the total weight at the end (W) and the weight of
capillarity (W.). These parameters are used to calculate the approximate meniscus weight (W,,) using Eq.

(2).
Wi = W =W, (1)

The water contact angle of woven samples can be determined from the meniscus weight using Eq. (2),

W, X g =7y, Xcosb Xp (2)
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Where p the sample perimeter in contact with the liquid (mm), Wy, the calculated meniscus weight (g),
g =9.81m/s?, y, the surface tension of the liquid (mN/m) and 6 the contact angle (°).

The capillarity of woven samples are obtained from the capillarity weight values (W) and are expressed as
a percentage (Eq. 3) of the fabric weight.

Wex100
Wy

Capillarity (%) = (3)

Where W. the weight of water absorbed by capillarity after 2 min of contact (g) and W; the textile sample
weight.

2.4.Selection procedure of relevant input parameters

In this paper, the fuzzy logic criterion developed by Deng et al. (2007) is used for selecting the most
relevant input parameters of plasma process. The main advantage of this method is that it can deal with a
limited number of learning data points. The sensitivity criterion is formalized according to the two following
principles:

— If a small variation of an input variable Ax corresponds to a large variation of the output
variable Ay, THEN this input variable has a large sensitivity value S.

— If a large variation of an input variable Ax corresponds to a small variation of the output
variable Ay, THEN this input variable has a small sensitivity value S.

These principles are transformed into a fuzzy model in which the input data variation Ax and the output
data variation Ay are taken as two input variables and the sensitivity S as output variable. Based on this
fuzzy logic sensitivity criterion, the following algorithm is proposed for selecting the most relevant variables
and removing irrelevant ones.

Inputs: process input variables X={x1,...,xm} and one related specific output y,
Output: relevant process parameters X,, and related sensitivity variation value A S

€ : threshold of sensitivity variation
Initialise X'=X, X,={}, A S";={}
While X' # @.
Calculate the sensitivity variation of inputs in X related to 'y, denoted
AS"y ={AS11 B St s Ssizex)n)
Xi=X: U {xi}, X’=X"\ {xi} where AS;; > 1 — ¢
X'=X"\ {x;} where AS;; < &
End

2.5.Neural network modeling

In this paper, a feed-forward neural network with two hidden layers is used for the plasma modeling. Two
cases of network architecture are considered. In the first case, each output is modeled using a separate
network. In the second case, a single network is used to model the two outputs. For both cases, a sigmoid
transfer function was used for hidden layers and a linear transfer function was used for the output layer.
This combination of activation functions can approximate any function (with a finite number of
discontinuities) with arbitrary accuracy, provided that the hidden layers have enough units (Cybenko,
1989). These networks are trained with two different algorithms: the levenberg-Marquardt algorithm
(trainlm) and the Bayesian regularization algorithm (trainbr). Prior to training, the available data is scaled
into zero mean and unity standard deviation. After that, the entire samples are randomly divided into a
training set (85 samples) and a test set (17 samples). Whenever early stopping technique is used, the initial
training set is divided, in the same way, into a training set (68 samples) and a validation set (17 samples).
The number of hidden neurons affects the efficiency and accuracy of learning. In order to optimize the
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models, the number of neurons in the hidden layers is determined using an iterative algorithm. The
principle of this algorithm is to first generate a network having one neuron in each hidden layer and then
add neurons one by one recurrently until some stopping criteria are reached. Since neural network is an
alternate statistical method, the root mean square error (RMSE) and correlation coefficient (R) are used as
performance criteria to get higher suitable models. Here, the number of hidden neurons is considered
optimal when the training and test root mean square errors are both of the same order and as small as
possible, and the correlation coefficients are close to 1 (Dreyfus et al., 2002). The training and test root
mean square errors are calculated according to Eq. (4) and (5), respectively

1 oN
RMSETraining = N—TZile d; — yi)z (4)
1
RMSErese =~ Yty (d; — ¥:)? (5)

t

where Nris the number of training samples, N: the number of test samples, d; the desired output, and y; the
calculated output of the network. The R values are obtained by calculating the regression coefficients of the
lines that relate network output values to their corresponding targets.

3. RESULTS AND DISCUSSIONS

In this study, 13 processing parameters and two wetting properties are collected directly from the plasma-
based fabric surface modification process as shown in table 2.

Table 2: Input and output parameters

Factor Variable name
Woven fabric features:
fiber nature (x;); fabric weight (x;); thickness (x3); construction (x4);
Processing weft density (xs); warp density (xs); weft count (x;); fiber count (xs);
parameters air permeability (xo); porosity (x10); surface roughness (x11)

Plasma parameters:
electrical power (x1,); treatment speed (x13)
Properties water contact angle (y1); capillarity (yz)

If we present all these 13 input parameters to the neural network, this would increase the network size,
which leads to an increase of the amount of data required to estimate connection weights efficiently and
decreases the processing speed. Thus, in order to reduce the size of the network, decrease the cost of data
collection and improve model performance, we use the fuzzy criterion presented previously to select the
relevant input variables and remove irrelevant ones. The threshold of sensitivity variation £ is set to the
value 0.2. Tables 3 and 4 show the steps for identifying the inputs relevant to water contact angle and
capillarity.

Table 3: Selection of relevant input variables related to water contact angle, using the fuzzy sensitivity variation

criterion
Remaining inputs Ranked inputs by The relevant inputs The irrelevant

ascending AS inputs

Step 1 All inputs, x; to xi3 X12, X13, X1, X9, X11, X8, X6, X12 Xs, X3
X10, X4, X7, X2, X3, Xs
Step 2 X1, X2, Xa, X6, X7, X8, X9, X10, | X13, X1, X11, X9, X8, X7, Xa, X10, X13, X1 X2
X11, X13 X6, X2

Step 3 X4, X6, X7, X8, X9, X10, X11 Xs, X11, X9, X7, X4, X10, X6 Xg X6
Step 4 Xa, X7, X9, X10, X11 X11, X9, X4, X7, X10 X11 X10, X7
Step 5 X9, Xa X9, X4 X9 X4
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Table 4: Selection of relevant input variables related to capillarity, using the fuzzy sensitivity variation criterion

Remaining inputs Ranked inputs by The relevant inputs The irrelevant
ascending AS inputs
Step 1 All inputs, X1 to Xi3 X12, X1, X13, X9, X11, X8, X6, X12, X1 Xs, X3
X10, X4, X7, X2, X3, Xs
Step 2 X2, X4, X6, X7, X9, X8, X10, X11, X13, X8, X9, X11, X7, X4, Xe, X10, X13 X2, X10
X13 X2
Step 3 Xa, X6, X7, X9, X8, X11 X8, X9, X11, X4, X7, X6 Xg, X9 Xe, X7
Step 4 X11, X4 X11, X4 X11 Xa

According to these tables, it can be noticed that, electrical power (x12), treatment speed (xi3), fiber nature
(x1), fiber count (xg), air permeability (xo) and surface roughness (x11) are identified as the most relevant
independent inputs for both water contact angle and capillarity. This result indicates that the modification
of textile surface is not only dependent on plasma parameters, but also influenced by woven fabric
features. Thus, by using the fuzzy sensitivity criterion, the number of input variables has been reduced by
more than 50%. The relevant parameters selected from this criterion can be ranked in a significant order of
relevancy. In fact, the earlier a given relevant parameter is identified in the selection procedure, the more
relevant it is to the corresponding output property. For example, electrical power is identified as a relevant
parameter at the first step of the selection procedure for both outputs. This finding highlighted the fact
that this parameter is more important than the other parameters selected at subsequent steps for both
water contact angle and capillarity. This ability of ranking features by their relevance is very helpful since it
would enable one to evaluate the sensitivity of each selected input parameter regarding the corresponding
output. This would enable in turn a better understanding on the plasma treatment process since the
adjustable parameters are more concise and easier to be interpreted physically.

The relevant selected parameters are used to set up neural network models. Two cases of network
configurations are studied. In the first case, two separate networks with two hidden layers and one output
layer neuron are considered. The first network had an output of water contact angle and the second had an
output of capillarity. The optimal architecture obtained in this case is given in Figure 2. The number of
neurons in the hidden layers was 5 in both layers in the first network and 6 and 4 in the first and second
layer in the second network. In the second case, a single network with two hidden layers is considered. The
input layer of this network corresponds to the six selected input parameters. The output layer corresponds
to the two outputs viz. water contact angle and capillarity. The optimal architecture of this network is given
in Figure 3. The number of neurons in the hidden layers was 8 and 6, respectively. These networks were
trained using the Levenberg-Marquardt (trainlm) and the Bayesian Regularization (trainbr) training
algorithms. The performances of these networks are measured by the root mean square errors on the
training and test data sets. In order to get a true unbiased indication of the network performance, a
regression analysis is performed between the network response and the corresponding targets. Tables 5
and 6 give a comparison of the performances of the two configurations trained with ‘trailm’ and ‘trainbr’,
respectively. The scatter plots of the network models in both cases are given in Figures 4 and 5 for the
‘trailm’ algorithm, and in Figures 6 and 7 for the ‘trainbr’ algorithm.
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Water contact

angle

Capillarity

Figure 2: Network architecture for (a) water contact angle and (b) capillarity. IW(k,]) is the input weight matrix, LW(k,I)
the layer weight matrix, and b(k) the bias vector

Water contact

angle

Capillany

Figure 3: Network architecture for water contact angle and capillarity. IW(k,l) is the input weight matrix, LW(k,I) the
layer weight matrix, and b(k) the bias vector

Table 5: Comparison of the two network configurations trained with Levenberg-Marquardt algorithm (trainim)

Case study Network Number of RMSETraining RMSEest RTraining Rrest
architecture iterations
Case 1 | Contact angle 6-5-5-1 25 0.734° 0.888° 0.9967 0.9848
capillarity 6-6-4-1 105 2.08% 2.42% 0.9993 0.9993
Case 2 | Contact angle 0.761° 1.084° 0.9965 0.9774
capillarity 6-8-6-2 80 2.96% 3.47% | 09986 | 0.9985

Table 6: Comparison of the two network configurations trained with Bayesian Regularization algorithm (trainbr)

Case study Network Number of RMSE raining RMSErest Rrraining Rrest
architecture iterations
Case 1 | Contact angle 6-5-5-1 60 0.461° 0.643° 0.9985 0.9917
capillarity 6-6-4-1 145 0.92% 1.32% 1 0.9998
Case 2 | Contact angle 6-8-6-2 120 0.569° 0.804° 0.9981 0.9876
capillarity 1.67% 2.21% 0.9995 0.9994

It can be seen from tables 5 and 6 that the two cases give good correlation coefficients and acceptable
prediction errors for both outputs, showing that their learning and generalization performances are good.
This result is confirmed by Figures 4, 5, 6 and 7 which show that the network-predicted and observed test
values fit closely. However, the networks models in case 1 are able to predict the water contact angle and
capillarity with higher coefficients of correlation and less root mean square errors as compared with case 2.
In addition, the number of hidden neurons in case 1 is less therefore the memory consumed for training is
much less than in the second case. Moreover, results show that the networks trained with ‘trainbr
generalize well when tested with unseen data as compared to the networks trained with ‘trailm’. This
finding can be attributed to the fact that Bayesian regularization does not require a validation data set to
be separated out of the training data set. It uses all of the data. Thus, it can be concluded that the Bayesian
regularization approach yields higher prediction accuracy than the early stopping technique.
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Figure 4: Correlation between output and target values of (a) water contact angle and (b) capillarity over the test set

in case 1 trained with ‘trainlm’
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Figure 5: Correlation between output and target values of (a) water contact angle and (b) capillarity over the test set
in case 2 trained with ‘trainim’
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Figure 6: Correlation between output and target values of (a) water contact angle and (b) capillarity over the test set

in case 1 trained with ‘trainbr
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Figure 7: Correlation between output and target values of (a) water contact angle and (b) capillarity over the test set
in case 2 trained with ‘trainbr’

4. CONCLUSION

In this paper, a fuzzy sensitivity criterion is used to select the most relevant parameters of plasma process
which are taken as inputs of the neural net models. These models are different in the number of output
neurons and learning algorithms. It was found that networks with one output layer neuron achieve better
learning ability and predictive capability. Furthermore, obtained results show that the Bayesian
regularization approach provides best performance on the training and test sets; however, it takes longer
to converge than the early stopping. Thus, it is believed that neural networks are valuable tools to predict
the water contact angle and the capillarity of woven fabrics subjected to plasma surface treatment.
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